S.S.S. 2 FURTHER MATH HOLIDAY ASSIGNMENT

- 1. Find the equations of tangent and normal to the curve $x^2 + y^2 = 1$ at point $\left(1, \frac{\sqrt{3}}{2}\right)$.
- 2. If α and β are the roots of the equation $2x^2 7x + 4 = 0$, find the equation whose roots are $\frac{\alpha + 1}{\beta}$ and $\frac{\beta + 1}{\alpha}$.
- 3. The instataneous displacement of a particle is given by $x = \ln \cos 2t e^{\ln \sin t} + t$. If $t = \pi$ seconds, find the exact values of its:
 - (*a*) displacement: *x*
 - (b) acceleration: $\frac{d^2x}{dt^2}$.
- 4. The position vector of a particle of mass 3Kg moving along a space curve at any time t seconds
 - is given by $r = (4t^3 t^2)i + (t 2t^2)j$; find the:
 - (a) velocity $\frac{dr}{dt}$ of the body; (b) acceleration $\frac{d^2r}{dt^2}$ of the body;
 - (*c*) the magnitude of the force acting on the body t = 2s, correct to 4 sf.
- 5. The position vector of a body, with respect to the origin, is given by $\mathbf{r} = 4t\mathbf{i} + (12 3t^2)\mathbf{j}$ at any time *t* seconds. If t = 1 second, find, the:
 - (*a*) exact magnitude of the displacement of the body;
 - (*b*) velocity $\frac{dr}{dt}$ of the body;
 - (c) exact magnitude of velocity of the body in its simplest form.