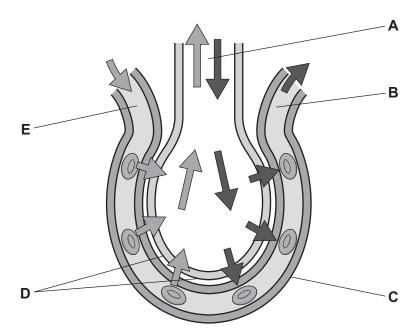


The Ambassadors College, Ota

Cambridge Lower Secondary Checkpoint


CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
SCIENCE			0893/01	
Holiday Assignment			February 2025 45 minutes	
You must answe	er on the question paper.			
No additional ma	aterials are needed.			
INSTRUCTIONS	INSTRUCTIONS			

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You should show all your working in the booklet.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

- 1 Alveoli are air sacs found at the end of the bronchioles in the lungs.
 - (a) The diagram shows how gas is exchanged in alveoli.

Match the description to the correct letter shown in the diagram.

Write your answers in the table.

description		
place where the blood has the highest oxygen concentration		
blood capillary wall		
a surface where gas exchange happens		

(b) Alveoli are adapted to maximise gas exchange.


Describe **one adaptation** of the alveoli and explain how this helps to maximise gas exchange.

adaptation	
explanation	
	[2]

(c) Red blood cells transport oxygen around the body.

Which mineral in the diet is needed to make red blood cells?

- 2 This question is about reactions of magnesium.
 - (a) Mia heats a piece of magnesium over a blue Bunsen flame.

(i) The magnesium reacts with a gas in the air.

Write down the name of this gas.

		carbon dioxide	chlorine	hvdrogen
	Circ	ele all the products of this reaction.		
(b)	Ма	gnesium reacts with dilute hydrochloric	acid.	
				[2]
		how to control risk		
		safety risk		
	(ii)	Describe one safety risk in this invest	tigation and how to control t	he risk.
				[1]

			0
magnesium chloride	magnesium hydroxide	Wa	ater

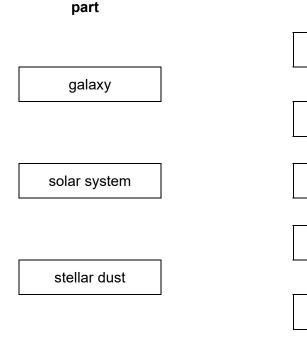
[2]

3 Safia uses an electromagnet to pick up steel pins.

She changes the current in the wire and records her results in the table.

current in A	number of pins
0.25	1
0.50	2
0.75	3
1.00	1
1.25	5

(a) Circle the anomalous result in the table.


[1]

(b) The current in the wire changes the strength of the electromagnet.

Suggest **one other** factor that changes the strength of the electromagnet.

4 Space has many parts.

Draw a straight line from each **part** to its correct **description**.

description

clouds of particles in space

object orbiting a planet

large group of stars

small planets

planets orbiting around a star

[3]

5 Some industries produce toxic substances.

These toxic substances sometimes enter food chains.

Look at the food chain.

algae \longrightarrow mayfly \longrightarrow small fish \longrightarrow big fish \longrightarrow otter

(a) Suggest a habitat where this food chain is found.

[1]

(b) The table shows how the amount of toxic substance increases along the food chain.

organism	relative concentration of toxic substance
algae	1
mayfly	12
small fish	50
big fish	320
otter	5000

(i) Explain why the relative concentration of toxic substance is **much higher** in an otter than a big fish.

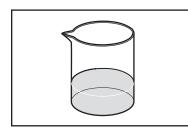
[1]

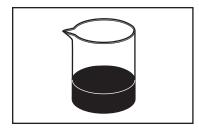
(ii) The amount of toxic substance increases along the food chain.

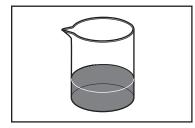
What is this process called?

[1]

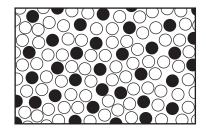
(c) Write down one impact of increasing the concentration of toxic substances on an ecosystem.

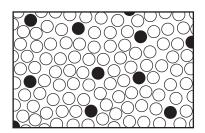

[1]

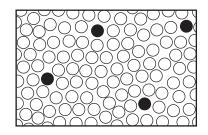

- **6** This question is about dissolving.
 - (a) When a blue food colour dissolves in water the solution turns blue.


As the concentration of the blue food colour increases the solution becomes darker.

Draw a straight line from each **solution** to the correct **particle diagram** representing the solution.


solution





particle diagram

= particle of blue food colour
= particle of water

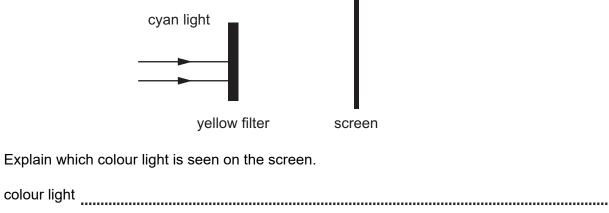
[1]

(b) Circle the word in **bold** that makes each sentence correct.

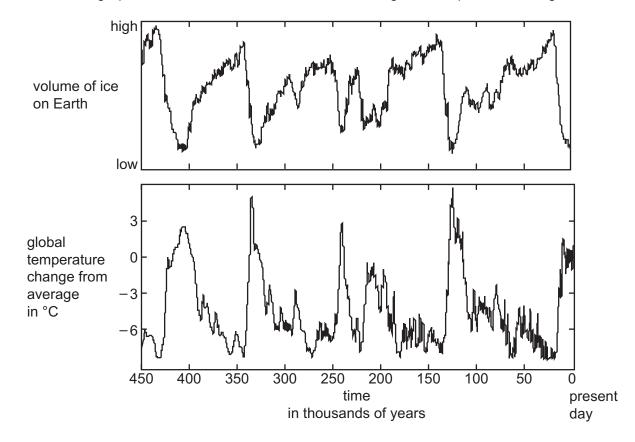
Blue food colour dissolves in water.

The blue food colour is the **solute / solvent / soluble**.

?

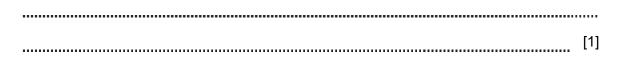

Water is the solute / solvent / soluble.

[1]


- 7 Ahmed investigates primary and secondary colours.
 - (a) Which colour of light is produced when red light and green light are mixed?Circle the correct answer.

	yellow	blue	cyan	magenta	white	
						[1]
(b) A	Ahmed wears a mage	nta and green	striped shirt.			
C	Complete the sentenc	es to explain l	now Ahmed's sh	irt looks in blue lig l	ht.	
l	n blue light, the mage	enta stripes loc	ok the colour			·
T	This is because mage	nta				
						·
l	n blue light, the green	n stripes look t	he colour			· · ·
Т	This is because green					
						·
						[2]

(c) Ahmed passes cyan light through a yellow filter.



reason [1]

8 Look at the graphs about the volume of ice on Earth and global temperature change.

- (a) Use information from the graphs to answer these questions.
 - (i) When was the highest global temperature?
 - thousand years ago [1]
 - (ii) Describe the relationship between the global temperature and the volume of ice on Earth.

(b) Climate and weather are two different things.

Which statements are about climate?

Tick (\checkmark) all the correct boxes.

average rainfall for a particular region	
changes in the atmosphere during a 24-hour period	
highest temperature recorded in a week	
long-term temperature pattern in a given area	
predicting when the next thunderstorm will happen	

[2]

9 Gold metal is used to make jewellery.

The purity of gold mixed with other metals is measured using a system called the carat rating.

The table shows the percentage of gold and the percentage of other metals in different carat ratings.

carat rating	minimum percentage of gold in the metal	maximum percentage of other metals mixed with the gold
24	100.0	0.0
22	91.6	8.4
18	75.0	25.0
14	58.5	41.5
10	41.7	58.3

A piece of gold mixed with other metals has a mass of 200 g.

The mass of gold in this mixture is 86.5 g.

(a) Calculate the percentage of gold in the mixture.

percentage of gold _____% [1]

(b) What is the carat rating for this mixture of gold and other metals?

carat rating [1]

10 Complete the sentences about diffusion.

Diffusion occurs in gases and _____.

When perfume is sprayed in a room, the perfume particles and air particles move and

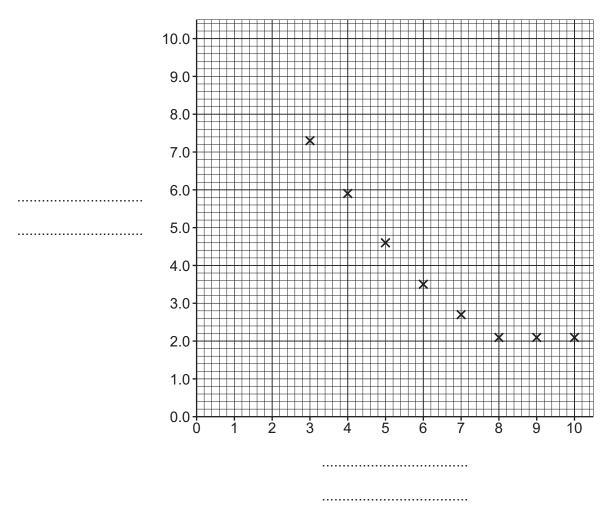
Diffusion occurs more quickly if a gas is hotter because the gas particles move

[2]

11 Yuri investigates the water content of potatoes.

Yuri:

- step 1 cuts a piece of potato with a sharp knife into a cube of mass 10.0 g
- step 2 heats the cube of potato in a microwave for 1 minute
- step 3 uses a balance to find the mass of the cube of potato
- step 4 repeats steps 2 and 3 until the cube of potato has been heated for a total of 10 minutes.
- (a) Here are his results.


time in minutes	mass of cube of potato in g
0	10.0
1	9.4
2	8.5
3	7.3
4	5.9
5	4.6
6	3.5
7	2.7
8	2.1
9	2.1
10	2.1

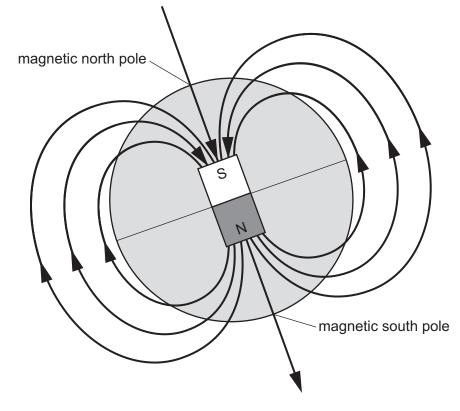
Look at the graph of his results.

The last eight masses from the table have been plotted on the graph.

Complete the graph by:

- labelling the axes
- plotting the first three masses from the table on the graph
- drawing a curve of best fit.

[4]


(b) Yuri says,

'I have read that vegetables are 90% water. I predict 90% of this potato will be water.'

Tick (\checkmark) to show if the results support Yuri's prediction.

	yes	no	
Explain your answer.			
			[1]

12 The diagram shows an analogy to describe the Earth's magnetism.

(a) Which part of the Earth's structure is represented by the bar magnet?

		[1]
(b)	What do the arrows represent?	
		[1]

13 Mike investigates reactions.

In his first experiment Mike:

- pours some water into a beaker
- measures the temperature of the water
- adds 1g of a solid to the water
- stirs the mixture until the temperature stops changing.

Mike repeats the experiment with four other solids.

Look at his results.

solid	temperature at the start in °C	temperature at the end in °C
Α	20	20
В	21	28
С	19	15
D	18	19
E	21	27

(a) (i) How many solids have an endothermic reaction with water?

.....

(ii) Mike has not done a fair test.

Suggest one way Mike could improve his investigation to make it a fair test.

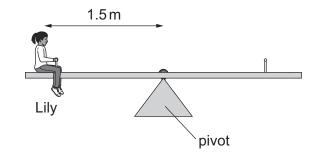
[1]

(iii) Mike describes solid A as being inert.

What is meant by the term inert?

[1]

(b) One example of an exothermic reaction is adding calcium oxide to water.


The product is calcium hydroxide.

Write the word equation for this reaction.

[1]

[1]

- **14** Lily and Blessy play on a seesaw.
 - (a) Lily sits at a distance of 1.5 m from the pivot.

Lily weighs 500 N.

Calculate the moment of Lily's weight about the pivot.

Include the unit in your answer.

moment of Lily's weight = _____ unit ____ [3]

(b) Blessy sits on the seesaw with Lily.

Blessy weighs 600 N.

The seesaw is balanced.

Calculate the distance Blessy sits from the pivot.

Use ideas about the principle of moments.

distance from pivot _____ m [2]

BLANK PAGE

		8	² He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	, К	krypton 84	54	Xe	xenon 131	86	Rn	radon	118	0g	ganesson -															
		7					fluorine 19			chlorine 35.5												e 0	71	Lu	Iutetium 175	103	Ľ	lawrencium -									
	-	9			8	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Ъ	tellurium 128	84	Ъ	polonium –	116	L<	livermorium -	70	٩۲	ytterbium 173	102	No	nobelium -									
	-	5			7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ē	bismuth 209	115	Mc	moscovium -	69	Tm	thulium 169	101	Мd	mendelevium -									
	-	4	-		9	U	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	РЬ	lead 207	114	Fl	flerovium -	68	ш	erbium 167	100	ЕД	fermium -									
	-	3			5	Ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	Tl	thallium 204	113	ЧN	nihonium –	67	Ч	holmium 165	66	Es	einsteinium -									
	-														1			30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	ü	copemicium -	66	D	dysprosium 163	98	ç	californium -		
ments																			29	Cu	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -	65	Tb	terbium 159	97	BĶ	berkelium -	
The Periodic Table of Elements	dn										28	ïŻ	nickel 59	46	Ъd	palladium 106	78	ţ	platinum 195	110	Ds	darmstadtium -	64	Gd	gadolinium 157	96	Cm	aurium I									
riodic Tal	Group										27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	63	Еu	europium 152	95	Am	americium -									
The Per			- I	hydrogen 1							26	Ъе	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium -			samarium 150		Pu	plutonium –									
					,						25	Mn	manganese 55	43	Ч	technetium -	75	Re	rhenium 186	107	Bh	bohrium –	61	Рш	promethium -	93	ЧN	neptunium -									
								loo	ISS				24	ъ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium -	60	ΡN	neodymium 144	92		uranium 238							
							Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	ц Ц	tantalum 181	105	Db	dubnium –	59	Pr	praseodymium 141	91	Ра	protactinium 231						
															atc	rela				22	Ħ	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	ŗ	rutherfordium -	58	Ce	cerium 140	06	ЧЦ	thorium 232
								-				Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 139	89	Ac	actinium -									
		2			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Sr	strontium 88	56	Ba	barium 137	88	Ra	radium -		ids			~										
		1			e	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	Ч	francium -		lanthanoids			actinoids										

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced annually and is available to download at https://lowersecondary.cambridgeinternational.org/

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.