SSS2 FURTHER MATH HOLIDAY ASSIGNMENT

- 1 (a) (i) Use the binomial theorem to expand $(1+3x)^7$ in ascending powers of x, as far as the term in x^3 . Simplify each term. [2]
 - (ii) Show that your expansion from **part** (i) gives the value of 1.03^7 as 1.23 to 2 decimal places. [2]
 - (b) Find the term independent of x in the expansion of $\left(\frac{x^4}{2} + \frac{2}{x}\right)^{15}$. [2]
- 2 (a) It is given that $f: x \to 2x^2$ for $x \ge 0$,

 $g: x \to 2x+1$ for $x \ge 0$.

Each of the expressions in the table can be written as one of the following.

 $f' \quad f'' \quad g' \quad g'' \quad fg \quad gf \quad f^2 \quad g^2 \quad f^{-1} \quad g^{-1}$

Complete the table. The first row has been completed for you.

[5]

Expression	Function notation
2	g′
0	
4 <i>x</i>	
$8x^2 + 8x + 2$	
4 <i>x</i> +3	
$\frac{x-1}{2}$	

- (b) It is given that $h(x) = (x-1)^2 + 3$ for $x \ge a$. The value of a is as small as possible such that h^{-1} exists.
 - (i) Write down the value of a. [1]
 - (ii) Write down the range of h. [1]
 - (iii) Find $h^{-1}(x)$ and state its domain.

[3]